Radial basis function-based image segmentation using a receptive field

نویسندگان

  • Domagoj Kovacevic
  • Sven Loncaric
چکیده

This paper presents a novel method for CT head image automatic segmentation. The images are obtained from patients having the spontaneous intra cerebral brain hemorrhage (ICH). The results of the segmentation are images partitioned into ve regions of interest corresponding to four tissue classes (skull, brain, calci cations and ICH ) and background. Once the images are segmented it is possible to calculate various hemorrhage region parameters such as its size, position, etc. The segmentation is performed in three major steps. In the rst phase a feature extraction and normalization is performed using a receptive eld (RF). Experiments were performed to determine the optimal RF structure. Pixels are classi ed in the second phase using the radial basis function (RBF) arti cial neural network. Experiments with di erent RBF network topologies were performed in order to determine the optimal basis functions, network size and a training algorithm. The segmentation results obtained using the RBF network were compared with results obtained by multi-layer perceptron neural network (MLP). In the third phase the image regions obtained by the RBF network were labeled using an expert system. Experiments have shown that the proposed method successfully performs image segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Adaptive Receptive Field Self-organizing Map for Image Segmentation

A new self-organizing map with variable topology is introduced for image segmentation. The proposed network, called Local Adaptive Receptive Field Self-organizing Map (LARFSOM-RBF), is a two-stage network capable of both color and border segment images. The color segmentation stage is responsibility of LARFSOM which is characterized by adaptive number of nodes, fast convergence and variable top...

متن کامل

Tuning Shape Parameter of Radial Basis Functions in Zooming Images using Genetic Algorithm

Image zooming is one of the current issues of image processing where maintaining the quality and structure of the zoomed image is important. To zoom an image, it is necessary that the extra pixels be placed in the data of the image. Adding the data to the image must be consistent with the texture in the image and not to create artificial blocks. In this study, the required pixels are estimated ...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997